Чтобы не оперировать с лишними цифрами, затрудняющими вычисления, но не характеризующими требуемую точность, отдельные числовые значения исходных данных следует округлять. Правила округления одинаковы для целых и дробных чисел.

Округление числа представляет собой отбрасывание цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,584 до сотых долей единицы (до второго разряда десятичных знаков) даст результат 132,58. Округление этого же числа до десятых долей единицы (до первого разряда десятичных знаков) даст результат 132,6; округление данного числа до целого (до разряда единиц) даст результат 133; округление до разряда десятков даст результат 13-Ю или 1,3-102.

При геодезических вычислениях применяют следующие правила округления:

Если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Примеры.

Округление числа 12,23 до первого десятичного знака даст результат 12,2.

Округление числа 0,02499 до второго десятичного знака даст результат 0,02.

Округление числа 8449 до разряда сотен даст результат 84« 102.

Округление числа 12 456 до разряда тысяч даст результат 12-Ю3.

Если первая из отбрасываемых цифр (считая слева направо) больше 5, то последнюю сохраняемую цифру увеличивают на единицу.

Примеры.

Округление числа 24,6 до целых единиц даст результат 25. Округление числа 0,2361 до сотых долей (до второго разряда десятичных знаков) даст результат 0,24.

Округление числа 1483 до целых сотен даст результат 15-102.

Когда отбрасываемая часть числа ровно 5, то последнюю сохраняемую цифру увеличивают на единицу, если она нечетная, и оставляют без изменения, если она четная (т. е. цифра разряда, до которого округляют число, в данном случае всегда должна быть четной).

Примеры.

Округление числа 4,55 до десятых долей даст результат 4,6.

Округление числа 122,5 до целых единиц даст результат 122.

Округление числа 0,0695 до тысячных долей единицы (до третьего разряда десятичных знаков) даст результат 0,070 или 70-10-3.

Особо следует выделить положение, когда отбрасываемая цифра 5 образовалась в результате предварительного округления цифр в последующих за ней разрядах. В этом случае необходимо действовать согласно следующим правилам:

если отбрасываемая цифра 5 получилась в результате предыдущего округления в большую сторону, то последняя цифра разряда, до которого округляют число, сохраняется; например, округление до первого десятичного знака числа 0,15, полученного после округления до двух десятичных знаков числа 0,1499, даст^ результат 0,1;

если отбрасываемая цифра 5 получилась в результате предыдущего округления в меньшую сторону, то последнюю цифру разряда, до которого округляют число, увеличивают на единицу; например, округление до одного десятичного знака числа 0,25, полученного в результате предыдущего округления числа 0,2501, даст результат 0,3.

В связи с этим округление приближенных чисел необходимо выполнять сразу до требуемого разряда, а не по этапам. Так, например, округление числа 565,46 до разряда целых единиц непосредственно дает результат 565 (правильный). Округление по этапам могло бы привести к ошибке, а именно: 1-й этап округления числа 565,46 до десятых долей дал бы результат 565,5; 2-й этап округления числа 565,5 до целых единиц дал бы результат 566 (неправильный).